If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4w^2+19w+5=0
a = -4; b = 19; c = +5;
Δ = b2-4ac
Δ = 192-4·(-4)·5
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-21}{2*-4}=\frac{-40}{-8} =+5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+21}{2*-4}=\frac{2}{-8} =-1/4 $
| 3x+2x+8-12=80+40 | | 32=18x+1/2*9.81x^2 | | 2(3b+-(=40 | | 6=2(f+1) | | 3x+32=7x-4 | | 3x+33=7x-4 | | -14-(-14)=x/6 | | 12x+1=14x-5 | | -(c-15)+11=12 | | 5(3c-1)-5=12c+5 | | –(c−15)+11=12 | | -(p+3)=-2 | | 8(4x+6)+(x+7)=7 | | 2x+`18-1=33 | | 14x-17=0 | | 12x+19x-8+2=2x+2-8 | | -2×(x+3)=12 | | 3X2-9x=5670 | | 5/x=8/40 | | 8+2(3x+1)=2(3x+1) | | X+2/5x+4=32 | | 7x-7x=6-6 | | 5/6=10/t | | 3(x+60)=42 | | -7+3=-x-3 | | (b^2-5b)^b-36=0 | | x+2=2-3x | | -2(g+3)+-9=-3 | | 5x+9=39+2x | | y/4=30.5 | | y/4=20.5 | | –2(g+3)+–9=–3 |